M1.(a) A combination of resistors in series connected across a voltage source (to produce a required pd) ✓

Reference to splitting (not dividing) pd

(b) When R increases, pd across R increases 🗸

Pd across R + pd across T = supply pd \checkmark

So pd across T / voltmeter reading decreases ✓ Alternative:

 $\frac{R_1 \times V_{tot}}{\text{Use of } V= R_1 + R_2} \checkmark$

 V_{tot} and R_2 remain constant \checkmark So V increases when R_1 increases \checkmark

(c) At higher temp, resistance of T is lower \checkmark

So circuit resistance is lower, so current / ammeter reading increases \checkmark

1

3

1

1

(d) Resistance of T = 2500 Ω

Current through $T = V / R = 3 / 2500 = 1.2 \times 10^{-3} A \checkmark$ (Allow alternative using $V_{\prime}/R_{_{1}} = V_{2}/R_{_{2}}$)

pd across R = 12 - 3 = 9 V The first mark is working out the current

Resistance of R = V / I = 9 / 1.2 × 10⁻³ = 7500 $\Omega \checkmark$ The second mark is for the final answer

1

1

(e) Connect the alarm across R instead of across T ✓ *allow: use a thermistor with a ptc instead of ntc.*

[9]

[1]

1

M2.B

M3.(a) (i) (use of I = V / R) first mark for adding resistance values 90 k Ω $I = 6.0 / (50\ 000 + 35\ 000 + 5000)$ $\checkmark = 6.7 \times 10^{-5} A \checkmark$

- (ii) $V = 6.7 \times 10^{-5} \times 5000 \quad \checkmark = 0.33 \ (0.33 0.35) \ \lor \land OR$ $V = 5 / 90 \times 6 \quad \checkmark = 0.33(\ \lor) \checkmark$ *CE from (i) BALD answer full credit 0.3 OK and dotted 0.3*
- (b) resistance of LDR decreases ✓ need first mark before can qualify for second

reading increase because greater <u>proportion / share</u> of the voltage across R OR higher current ✓

2

2

2

(c) $I = 0.75 / 5000 = 1.5 \times 10^{-4} (A) \checkmark$ (pd across LDR = 0.75 (V)) pd across variable resistor = 6.0 - 0.75 - 0.75 = 4.5 (V) \checkmark $R = 4.5 / 1.5 \times 10^{-4} = 30\ 000\ \Omega \checkmark$ or $I = 0.75 / 5000 = 1.5 \times 10^{-4}$ (A) \checkmark

$$R_{\text{total}}| = 6.0 / 1.5 \times 10^{-4} = 40\ 000\ \Omega \checkmark$$

$$R = 40\ 000 - 5000 - 5000 = 30\ 000\ \Omega \checkmark$$

M4.(a) (i)
$$1/R_{total} = 1/(40) \checkmark + 1/(10+5) \checkmark = 0.09167$$

R_{total} = 10.9 kQ \checkmark

(b)

position	pd / V
AC	6.0 🗸
DF	4.0 ✓
CD	2.0 🗸

 (ii) DF: decreases ✓ as greater proportion of voltage across fixed / 10 k Ω resistor ✓ no CE from first mark

[11]

2

[9]

3

3

1

3

2

M5. (a) 1 joule per coulomb (or equivalent)		
allow watt per amp	B1	1
(b) (i) Use of potential divider formula allow 1 for 4.05 (V) or current of 2.25 (mA)	C1	
4.95 (V)	A1	2
(ii) reduced current	B1	1
(iii) use of parallel resistor formula	C1	
leading to 1.72 (kΩ) pd = 4.4 (V)	C1	
	A1	3
 (iv) potential divider can provides sensitive control of current (from 0 - 1.1 mA) allow pot div can provide zero current and variable resistor 	B1	
gives larger current variable resistor can provide larger current but cannot get near 0 A ow	itte	
	B1	2

M6. (a) (i) (use of V = IR)
$$I = (12-8) / 60 \checkmark = 0.067 \text{ Or } 0.066(A) \checkmark$$

(ii) (use of V = IR)
R = 8/0.067 = 120 (
$$\Omega$$
) \checkmark 1

(iii) (use of
$$Q = It$$
)
 $Q = 0.067 \times 120 = 8.0 \checkmark C \checkmark$

(b) reading will increase \checkmark

resistance (of thermistor) decreases (as temperature increases) \checkmark

current in circuit increase (so pd across R_1 increases) OR correct potential divider argument \checkmark

[8]

2